7 research outputs found

    Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities

    Full text link
    We examine in detail the relative equilibria in the four-vortex problem where two pairs of vortices have equal strength, that is, \Gamma_1 = \Gamma_2 = 1 and \Gamma_3 = \Gamma_4 = m where m is a nonzero real parameter. One main result is that for m > 0, the convex configurations all contain a line of symmetry, forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for all m but the isosceles trapezoid case exists only when m is positive. In fact, there exist asymmetric convex configurations when m < 0. In contrast to the Newtonian four-body problem with two equal pairs of masses, where the symmetry of all convex central configurations is unproven, the equations in the vortex case are easier to handle, allowing for a complete classification of all solutions. Precise counts on the number and type of solutions (equivalence classes) for different values of m, as well as a description of some of the bifurcations that occur, are provided. Our techniques involve a combination of analysis and modern and computational algebraic geometry

    Convex central configurations of the 4-body problem with two pairs of equal masses

    Get PDF
    Agraïments: The first and third authors are partially supported by FAPEMIG grant APQ-001082/14. The third author is partially supported by CNPq grant 472321/2013-7 and by FAPEMIG grant PPM-00516-15. The second and third autors are supported by CAPES CSF-PVE grant 88881.030454/2013-01.MacMillan and Bartky in 1932 proved that there is a unique isosceles trapezoid central configuration of the 4--body problem when two pairs of equal masses are located at adjacent vertices. After this result the following conjecture was well known between people working on central configurations: The isosceles trapezoid is the unique convex central configuration of the planar 4--body problem when two pairs of equal masses are located at adjacent vertices. We prove this conjecture
    corecore